Not developed or endorsed by NARA or DVIDS. Part of the World's largest public domain source PICRYL.com.
Shuttle Atlantis Returning to Kennedy Space Center after 10 Month Refurbishment

Similar

Shuttle Atlantis Returning to Kennedy Space Center after 10 Month Refurbishment

description

Summary

payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site. A look-down view on the Space Shuttle orbiter Atlantis piggy-backed on top of one of NASA's Boeing 747 Shuttle Carrier Aircraft (SCA) as it departs California for the Kennedy Space Center, Florida in September 1998. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a
NASA Identifier: NIX-EC98-44740-4

date_range

Date

1990 - 1999
place

Location

Armstrong Flight Research Center34.95855, -117.89067
Google Map of 34.95855, -117.89067
create

Source

Defense Visual Information Distribution Service
copyright

Copyright info

Public Domain Dedication. Public Use Notice of Limitations: https://www.dvidshub.net/about/copyright

Explore more

nasa
nasa

The objects in this collection are from The U.S. National Archives and Defense Visual Information Distribution Service. The U.S. National Archives and Records Administration (NARA) was established in 1934 by President Franklin Roosevelt. NARA keeps those Federal records that are judged to have continuing value—about 2 to 5 percent of those generated in any given year. There are approximately 10 billion pages of textual records; 12 million maps, charts, and architectural and engineering drawings; 25 million still photographs and graphics; 24 million aerial photographs; 300,000 reels of motion picture film; 400,000 video and sound recordings; and 133 terabytes of electronic data. The Defense Visual Information Distribution Service provides a connection between world media and the American military personnel serving at home and abroad. All of these materials are preserved because they are important to the workings of Government, have long-term research worth, or provide information of value to citizens.

Disclaimer: A work of the U.S. National Archives and DVIDS is "a work prepared by an officer or employee" of the federal government "as part of that person's official duties." In general, under section 105 of the Copyright Act, such works are not entitled to domestic copyright protection under U.S. law and are therefore in the public domain. This website is developed as a part of the world's largest public domain archive, PICRYL.com, and not developed or endorsed by the U.S. National Archives or DVIDS.  https://www.picryl.com

Developed by GetArchive, 2015-2024